Package 'pubDashboard'

Title: Creating Publication Data Visualization Dashboards
Description: Package to facilitate the creation of data visualization dashboards through the flexdashboard and openalexR packages.
Authors: Rémi Thériault [aut, cre]
Maintainer: Rémi Thériault <[email protected]>
License: GPL (>= 3)
Version: 0.0.1
Built: 2024-12-21 01:17:39 UTC
Source: https://github.com/rempsyc/pubDashboard

Help Index


Add regions to pubDashboard dataframe

Description

Add regions to pubDashboard dataframe

Usage

add_region(data, progress_bar = FALSE)

Arguments

data

The dataframe on which to add region.

progress_bar

Logical, whether to print a progress bar.

Examples

## Not run: 
x <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1, per_page = 1)
x <- add_region(x)
names(x)

## End(Not run)

Clean dataframe, for names of journals and continents

Description

Clean dataframe, for names of journals and continents

Usage

clean_journals_continents(data, progress_bar = FALSE)

Arguments

data

The processed dataframe of data

progress_bar

Logical, whether to print a progress bar.

Examples

## Not run: 
x <- fetch_openalex_pubs(journal_name = "Collabra",
  pages = 1, per_page = 1, publication_year = 2024)
x <- clean_journals_continents(x)
names(x)

## End(Not run)

List of countries taken from the package countrycode

Description

List of countries taken from the package countrycode

Usage

countries

Format

A vector of class character containing country names.


Detect missing journals

Description

Detect missing journals

Usage

detect_missing_journals(data)

Arguments

data

The processed dataframe of data


Generate a dygraph of journal paper percentages, by country and year

Description

Generate a dygraph of journal paper percentages, by country and year

Usage

dygraph_year(data, level = "continent")

Arguments

data

The processed dataframe of data

level

Level of analysis, either country or continent

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
dygraph_year(data)
dygraph_year(data, "country")

## End(Not run)

Downloads relevant publication data using openalexR

Description

Downloads relevant publication data using openalexR

Usage

fetch_openalex_pubs(
  journal_name = NULL,
  journal_id = NULL,
  clean_journals_continents = FALSE,
  progress_bar = FALSE,
  verbose = TRUE,
  ...
)

Arguments

journal_name

The list of desired journals (by journal name).

journal_id

The list of desired journals (by OpenAlex ID).

clean_journals_continents

Logical, whether to also process the dataframe with the clean_journals_continents function. It is set to FALSE by default because on large datasets it can be very time consuming.

progress_bar

Logical, whether to print a progress bar.

verbose

Passed to openalexR::oa_fetch() and defaults to TRUE.

...

Arguments passed to openalexR::oa_fetch()

Details

As recommended by the authors of the openalexR package,

Before we go any further, we highly recommend you set openalexR.mailto option so that your requests go to the polite pool for faster response times. If you have OpenAlex Premium, you can add your API key to the openalexR.apikey option as well. These lines best go into .Rprofile with file.edit("~/.Rprofile").

options(openalexR.mailto = "[email protected]")
options(openalexR.apikey = "EXAMPLE_APIKEY")"

Examples

## Not run: 
x <- fetch_openalex_pubs(journal_name = "Collabra",
  pages = 1, per_page = 1, publication_year = 2024)
names(x)
# Same as:
x <- fetch_openalex_pubs(journal_id = "S4210175756",
  pages = 1, per_page = 1, publication_year = 2024)
names(x)

## End(Not run)

Extract openalexR journal ID from journal names

Description

Extract openalexR journal ID from journal names

Usage

get_journal_id(journal_name, verbose = TRUE)

Arguments

journal_name

The list of desired journals (by journal name).

verbose

Passed to openalexR::oa_fetch() and defaults to TRUE.

Details

As recommended by the authors of the openalexR package,

Before we go any further, we highly recommend you set openalexR.mailto option so that your requests go to the polite pool for faster response times. If you have OpenAlex Premium, you can add your API key to the openalexR.apikey option as well. These lines best go into .Rprofile with file.edit("~/.Rprofile").

options(openalexR.mailto = "[email protected]")
options(openalexR.apikey = "EXAMPLE_APIKEY")"

Examples

## Not run: 
x <- get_journal_id(journal_name = "Collabra")
x
x <- get_journal_id(journal_name = c(
  "Social Psychological and Personality Science", "Nature Human Behaviour"))
x$id

## End(Not run)

List of academic journals and corresponding fields

Description

List of academic journals and corresponding fields

Usage

journal_field

Format

A data frame with 60 rows and 5 variables:

journal

academic journal

journal_abbr

abbreviation of the journal name

openalex_id

the OpenAlex ID

field

the field of research

original_journal

Whether it is part of one of the six original journals

...


Loop fetch_openalex_pubs over journals or years

Description

Loop fetch_openalex_pubs over journals or years

Usage

lapply_fetch_openalex_pubs(
  years = 1987:2023,
  journal_id,
  over = "year",
  from_publication_date = "1987-01-01",
  save = TRUE,
  file_suffix = "",
  verbose = TRUE,
  ...
)

Arguments

years

Desired list to loop over (for option over = "year").

journal_id

The list of desired journals (by OpenAlex ID).

over

Looping over what. Options are "year" or "journal".

from_publication_date

Start date (for option over = "journal").

save

Whether to save the data to disk.

file_suffix

What suffix to add to the file (e.g., "_new").

verbose

Passed to openalexR::oa_fetch() and defaults to TRUE.

...

Arguments passed to openalexR::oa_fetch()

Details

As recommended by the authors of the openalexR package,

Before we go any further, we highly recommend you set openalexR.mailto option so that your requests go to the polite pool for faster response times. If you have OpenAlex Premium, you can add your API key to the openalexR.apikey option as well. These lines best go into .Rprofile with file.edit("~/.Rprofile").

options(openalexR.mailto = "[email protected]")
options(openalexR.apikey = "EXAMPLE_APIKEY")"

Examples

## Not run: 
lapply_fetch_openalex_pubs(
  over = "journal",
  journal_id = c("https://openalex.org/S90392387",
                 "https://openalex.org/S33443600"),
 from_publication_date = "2024-01-01",
 to_publication_date = "2024-10-15",
 save = FALSE)

## End(Not run)

Read local pubDashboard data files and bind them in a single dataframe

Description

Read local pubDashboard data files and bind them in a single dataframe

Usage

read_bind_all_data(data_folder = "data", check_duplicate = FALSE)

Arguments

data_folder

The folder in which the data lives

check_duplicate

whether to check article ids with rempsyc::best_duplicate


Render complete pubDashboard dashboard

Description

Render complete pubDashboard dashboard

Usage

render_dashboard(
  file_name = "dashboard",
  title = "title",
  author = "author",
  journal_name = NULL,
  journal_id = NULL,
  data_folder = "data",
  tab_continent = TRUE,
  tab_continent_year = TRUE,
  tab_continent_journal = TRUE,
  tab_country = TRUE,
  tab_country_journal = TRUE,
  tab_psychology = FALSE,
  tab_economics = FALSE,
  tab_general = FALSE,
  tab_figure1 = FALSE,
  tab_missing = TRUE,
  ...
)

Arguments

file_name

Desired file name.

title

Desired dashboard title.

author

Desired displayed dashboard author.

journal_name

The list of desired journals (by journal name).

journal_id

The list of desired journals (by OpenAlex ID).

data_folder

Folder where to save the data.

tab_continent

Whether to render the "Continent" tab.

tab_continent_year

Whether to render the "Continent by year" tab.

tab_continent_journal

Whether to render the "Continent by journal" tab.

tab_country

Whether to render the "Country" tab.

tab_country_journal

Whether to render the "Country by journal" tab.

tab_psychology

Whether to render the "Psychology" tab.

tab_economics

Whether to render the "Economics" tab.

tab_general

Whether to render the "General" tab.

tab_figure1

Whether to render the "Figure 1" tab.

tab_missing

Whether to render the "Missing" tab.

...

Arguments passed to openalexR::oa_fetch()

Examples

## Not run: 
render_dashboard(
  file_name = "my_dashboard",
  title = "Wonderful Dashboard",
  author = "Rémi Thériault",
  journal_name = c("Journal of Personality and Social Psychology", "Health Psychology"),
  from_publication_date = "2024-01-01",
  tab_figure1 = TRUE
)

## End(Not run)

Generate table of journal paper percentages, by continent and year

Description

Generate table of journal paper percentages, by continent and year

Usage

scatter_continent_year(
  data,
  method = "lm",
  ymin = 0,
  ymax = 100,
  yby = 20,
  plotly = TRUE,
  citation = NULL,
  citation_size = 15,
  text_size = NULL,
  height = NULL,
  data_formatted = NULL,
  ...
)

Arguments

data

The processed dataframe of data

method

Which method to use for the regression line, either "lm" (default) or "loess"

ymin

Minimum value for y-axis

ymax

Maximum value for y-axis

yby

Tick increments for y-axis

plotly

Logical, whether to use plotly for dynamic data visualization

citation

Optionally, a citation to add as a footer

citation_size

Font size of the citation

text_size

Size of the element_text ggplot2 element

height

Height argument of plotly::ggplotly

data_formatted

To save time, it is possible to reuse the dataframe used for this function that is generated by table_continent_year().

...

Further arguments passed to rempsyc::nice_scatter

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra Psychology", pages = 1)
data <- clean_journals_continents(data)
scatter_continent_year(data)

## End(Not run)

Generate table of journal paper percentages, by continent and year

Description

Generate table of journal paper percentages, by continent and year

Usage

scatter_country_year(
  data,
  method = "lm",
  ymin = 0,
  ymax = 100,
  yby = 20,
  plotly = TRUE,
  citation = NULL,
  citation_size = 15,
  text_size = NULL,
  height = NULL,
  data_formatted = NULL,
  ...
)

Arguments

data

The processed dataframe of data

method

Which method to use for the regression line, either "lm" (default) or "loess".

ymin

Minimum value for y-axis

ymax

Maximum value for y-axis

yby

Tick increments for y-axis

plotly

Logical, whether to use plotly for dynamic data visualization.

citation

Optionally, a citation to add as a footer.

citation_size

Font size of the citation.

text_size

Size of the element_text ggplot2 element

height

Height argument of plotly::ggplotly

data_formatted

To save time, it is possible to reuse the dataframe used for this function that is generated by table_country_year().

...

Further arguments passed to rempsyc::nice_scatter

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
suppressWarnings(scatter_country_year(data))

## End(Not run)

Generate table of journal paper percentages, by continent and year

Description

Generate table of journal paper percentages, by continent and year

Usage

scatter_figure1(data, method = "lm", original = TRUE, plotly = TRUE, ...)

Arguments

data

The processed dataframe of data

method

Which method to use for the regression line, either "lm" (default) or "loess".

original

Logical; if TRUE, attempts to mimic Arnett's (2008) Figure 1 in style.

plotly

Logical, whether to use plotly for dynamic data visualization.

...

Further arguments passed to rempsyc::nice_scatter

Examples

## Not run: 
journals <- c("Developmental Psychology",
             "Journal of Personality and Social Psychology",
             "Journal of Abnormal Psychology",
             "Journal of Family Psychology",
             "Health Psychology",
             "Journal of Educational Psychology"
)

data <- fetch_openalex_pubs(journal_name = journals, pages = 10)
data <- clean_journals_continents(data)
scatter_figure1(data)

## End(Not run)

Generate table of journal paper percentages, by continent and year

Description

Generate table of journal paper percentages, by continent and year

Usage

scatter_journal_year(
  data,
  method = "lm",
  ymin = 0,
  ymax = 100,
  yby = 20,
  plotly = TRUE,
  citation = NULL,
  citation_size = 15,
  ncol = 4,
  ...
)

Arguments

data

The processed dataframe of data

method

Which method to use for the regression line, either "lm" (default) or "loess"

ymin

Minimum value for y-axis

ymax

Maximum value for y-axis

yby

Tick increments for y-axis

plotly

Logical, whether to use plotly for dynamic data visualization

citation

Optionally, a citation to add as a footer

citation_size

Font size of the citation

ncol

How many columns for ggplot2::facet_wrap

...

Further arguments passed to rempsyc::nice_scatter

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
scatter_journal_year(data)

## End(Not run)

Generate table of journal paper percentages, by continent

Description

Generate table of journal paper percentages, by continent

Usage

table_continent(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_continent(data)

## End(Not run)

Generate table of journal paper percentages, by continent and journals

Description

Generate table of journal paper percentages, by continent and journals

Usage

table_continent_journal(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_continent_journal(data)

## End(Not run)

Generate table of journal paper percentages, by continent and year

Description

Generate table of journal paper percentages, by continent and year

Usage

table_continent_year(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_continent_year(data)

## End(Not run)

Generate table of journal paper percentages, by country

Description

Generate table of journal paper percentages, by country

Usage

table_country(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_country(data)

## End(Not run)

Generate table of journal paper percentages, by continent and year

Description

Generate table of journal paper percentages, by continent and year

Usage

table_country_journal(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_country_journal(data)

## End(Not run)

Generate table of journal paper percentages, by country and year

Description

Generate table of journal paper percentages, by country and year

Usage

table_country_year(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_country_year(data)

## End(Not run)

Count number of papers per journal, with year range

Description

Count number of papers per journal, with year range

Usage

table_journal_count(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_journal_count(data)

## End(Not run)

Generate table of journal paper percentages, by journal, continent and year

Description

Generate table of journal paper percentages, by journal, continent and year

Usage

table_journal_year(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
table_journal_year(data)

## End(Not run)

Generate table of journal paper percentages, by country

Description

Generate table of journal paper percentages, by country

Usage

table_missing_country(data, datatable = TRUE)

Arguments

data

The processed dataframe of data

datatable

Whether to output a DT::datatable HTML table widget instead of a regular dataframe (defaults to TRUE).

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
data[1, c(4, 6)] <- NA
table_missing_country(data)

## End(Not run)

A data frame of university and corresponding country

Description

Obtained from GitHub, and then modified with minor improvements and more universities.

Usage

universities

Format

A data frame with 9420 rows and 2 variables:

country_code

the country code

university

the university

...

Source

https://raw.githubusercontent.com/endSly/world-universities-csv/master/world-universities.csv


List of US states taken from the package countrycode

Description

List of US states taken from the package countrycode

Usage

us_states

Format

A data frame with 50 rows and 3 variables:

state.name

the name of the state

state.abb

the name of the abbreviation

state.regex

the regex for that state

...


Generate a waffle chart of journal paper percentages, by continent (each square = 1% of data)

Description

Generate a waffle chart of journal paper percentages, by continent (each square = 1% of data)

Usage

waffle_continent(
  data,
  citation = NULL,
  citation_size = NULL,
  data_formatted = NULL
)

Arguments

data

The processed dataframe of data

citation

Optionally, a citation to add as a footer.

citation_size

Font size of the citation.

data_formatted

To save time, it is possible to reuse the dataframe used for this function that is generated by table_continent().

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Journal of Economic Psychology", pages = 1)
data <- clean_journals_continents(data)
waffle_continent(data)

## End(Not run)

Generate a waffle chart of journal paper percentages, by continent (each square = 1% of data)

Description

Generate a waffle chart of journal paper percentages, by continent (each square = 1% of data)

Usage

waffle_continent_journal(
  data,
  citation = NULL,
  citation_size = NULL,
  journal_abbreviation = TRUE,
  data_formatted = NULL
)

Arguments

data

The processed dataframe of data

citation

Optionally, a citation to add as a footer.

citation_size

Font size of the citation.

journal_abbreviation

Logical, whether to use the journal abbreviation to fit the entire plot, otherwise some journal names can be quite long and accordingly be cropped.

data_formatted

To save time, it is possible to reuse the dataframe used for this function that is generated by table_continent_journal().

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra Psychology", pages = 1)
data <- clean_journals_continents(data)
waffle_continent_journal(data)

## End(Not run)

Generate a waffle plot made of country flags

Description

Generate a waffle plot made of country flags

Usage

waffle_country(
  data,
  citation = NULL,
  citation_size = NULL,
  data_formatted = NULL,
  flag_size = 8.5
)

Arguments

data

The processed dataframe of data

citation

Optionally, a citation to add as a footer.

citation_size

Font size of the citation.

data_formatted

To save time, it is possible to reuse the dataframe used for this function that is generated by table_country().

flag_size

Size of flags.

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
waffle_country(data)

## End(Not run)

Generate a waffle chart of journal paper percentages, by continent (each square = 1% of data)

Description

Generate a waffle chart of journal paper percentages, by continent (each square = 1% of data)

Usage

waffle_country_journal(
  data,
  citation = NULL,
  citation_size = NULL,
  journal_abbreviation = TRUE,
  data_formatted = NULL
)

Arguments

data

The processed dataframe of data

citation

Optionally, a citation to add as a footer.

citation_size

Font size of the citation.

journal_abbreviation

Logical, whether to use the journal abbreviation to fit the entire plot, otherwise some journal names can be quite long and accordingly be cropped.

data_formatted

To save time, it is possible to reuse the dataframe used for this function that is generated by table_country_journal().

Examples

## Not run: 
data <- fetch_openalex_pubs(journal_name = "Collabra", pages = 1)
data <- clean_journals_continents(data)
waffle_country_journal(data)

## End(Not run)

List of world capitals taken from the package maps

Description

List of world capitals taken from the package maps

Usage

world_capitals

Format

A data frame with 259 rows and 6 variables:

name

the name of the capital

country.etc

the country of the capital

pop

population of the capital

lat

latitude of the capital

long

longitude of the capital

capital

whether it is a capital

...